In our recent posts, we have explored various Mathematical Language Routines (MLRs) that aim to foster language development in the math classroom. We have covered MLR 1: “Stronger and Clearer Each Time,” MLR 2: “Collect and Display,” MLR 3: “Critique, Correct, Clarify,” MLR 4: “Information Gap,” and MLR 5: “Co-Craft Questions and Problems.” Each of these MLRs has offered valuable insights into different aspects of language acquisition in mathematics, be it written and oral expression, oral language proficiency, or the comprehension of tasks and word problems.
Building upon these discussions, let’s now delve into our next MLR, MLR 6: “Three Reads.” This routine plays a crucial role in enhancing reading comprehension and developing meta-awareness of mathematical language. By engaging in this exercise, students get the opportunity to practice navigating the intricacies of math-related questions, which often pose challenges for them. Through multiple readings, they can better understand the unique ways in which math concepts are presented and effectively plan their strategies for problem-solving. MLR 6: “Three Reads” serves as an important tool for supporting students’ grasp of mathematical language and equips them with the skills needed to tackle word problems with confidence.
The Three Reads protocol is a powerful tool designed to enhance students’ understanding of mathematical word problems. Its main purpose is to break down complex problems into manageable steps that students can comprehend, analyze, and solve successfully. This protocol is particularly beneficial for multilanguage learners and students with academic disabilities who often struggle with comprehending mathematical texts.
The Three Reads protocol begins by encouraging students to focus on the meaning of the problem. Instead of rushing to perform calculations, students are prompted to truly understand the context and situation described in the word problem. This initial step allows students to connect with the story or situation presented and reflect on its implications.
After gaining a solid understanding of the problem’s context, students move on to the second read. Here, they concentrate on identifying the units and quantities involved in the problem. By focusing on these key components, students can make sense of the mathematical concepts and relationships embedded within the word problem.
Finally, during the third read, students shift their attention to the specific tasks or questions asked in the problem. By this stage, students have already engaged deeply with the problem’s meaning and mathematical content. They are now able to formulate a plan of action and approach the problem in a strategic manner.
The Three Reads protocol supports not only reading comprehension but also sense-making and meaningful conversations around mathematical texts. By emphasizing understanding and meaning before diving into calculations, students are given the opportunity to reflect on different presentation styles, negotiate interpretations, and explore multiple solution strategies.
Let’s explore an example that demonstrates how to implement the protocol of co-crafting questions with students. In this example, Mateo’s M&Ms, the quantities are initially hidden to allow students to focus on comprehending the story. Once they grasp the concept that Mateo has a bag of M&Ms with different colors, the quantities are revealed. At this point, students can create a T chart to organize the quantities and their corresponding units. Although the units are the same in this particular example, it’s important to note that it may not always be the case in every word problem. Utilizing the T chart helps students effectively organize the information. Moving on, the final phase of this example involves students creating their own questions, reminiscent of MLR 5. By allowing students to differentiate and choose their own questions, they are encouraged to tackle more challenging problems rather than opting for the easy way out. This approach also fosters open-ended questions that lead to a variety of possible solutions. It’s a wonderful way to introduce this routine. Additionally, another teacher in my district, Nicole Garcia, and I have developed a recording sheet to assist students in organizing their thoughts and work. It’s worth noting that it’s also practical to address problems that already come with pre-established questions. In these cases, steps 1 and 2 of the protocol remain the same. However, in step 3, students formulate a plan to answer the provided question. Once again, reading the story multiple times allows students the necessary time to grasp and organize the given information.



In summary, the Three Reads protocol encourages students to engage actively with mathematical questions, reflect on presentation styles, and negotiate meaning. By following this routine, students can develop a deeper comprehension of word problems, improve their mathematical reasoning skills, and ultimately enhance their overall problem-solving abilities.


2 thoughts on “Mastering Mathematical Language Routine 6: Three Reads”